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Endogenous Spatial Regimes

Luc Anselin� and Pedro Amaraly

July 20, 2021

Abstract

In spatial econometrics, the treatment of spatial heterogeneity can be approached from a
continuous or a discrete perspective. In a continuous approach, represented by methods such
as geographically weighted regression (GWR) and Bayesian varying coe�cient speci�cations,
the model coe�cients are allowed to vary smoothly over space. In contrast, in a discrete
perspective, referred to as spatial regimes, the coe�cients vary by discrete subregions of the
data.

Whereas the estimation of spatial regime regressions is well understood, the delineation of
the regimes themselves remains a topic of active interest. Broadly speaking, three approaches
can be distinguished: exogenous regimes, determined a priori (e.g., administrative regions);
data-driven regimes, obtained as the result of a clustering exercise; and endogenous regimes,
where the coe�cients and the regime allocation are obtained jointly, e.g., as the result of a �nite
mixture regression. One drawback of most data-driven and endogenous regime delineation is
that the results do not necessarily satisfy a spatial contiguity constraint, i.e., observations are
grouped together that are not spatially connected.

In this paper, we propose a new heuristic to determine the spatial regimes endogenously, as
an extension of the well-known SKATER algorithm for spatially constrained clustering. This
guarantees that the resulting regimes consist of contiguous observations. We outline the method
and apply it in the context of the determination of housing submarkets, which is represented
by a rich literature in applied spatial econometrics. We use a well-known Kaggle data set as the
empirical example, which contains observations on house sales in King County, Washington.
We compare the estimation of a hedonic house price model using the new endogenous spatial
regimes approach to a range of more traditional methods, including pooled regression, the use
of administrative districts, data-driven regimes based on a-spatial and spatial clustering of ex-
planatory variables, and �nite mixture regression. We evaluate the results in terms of �t and
assess the trade-o�s between the spatial and a-spatial approaches.

Keywords: spatial heterogeneity, spatial regimes, spatially constrained clustering, SKATER,
housing submarkets
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Endogenous Spatial Regimes

1 Introduction

As is well known, in spatial econometrics, the two fundamental spatial e�ects that require a spe-

cialized methodology are spatial dependence and spatial heterogeneity (Anselin, 1988). Of the two,

spatial dependence has arguably led to the bulk of the results in the literature, although spatial

heterogeneity has received considerable attention as well, especially since the renewed focus on the

local in quantitative geography (e.g., Fotheringham, 1997; Lloyd, 2010, among others).

Fundamentally, a distinction can be made between a discrete and a continuous perspective on

spatial heterogeneity. In the continuous approach, regression model coe�cients vary smoothly over

the locations (observations), either in a deterministic or in a random fashion. An early approach to

continuous spatial heterogeneity was the spatial expansion method outlined in the work of Casetti

(Casetti, 1972, 1997), where regression coe�cients are expressed as a function of other variables,

somewhat similar to the speci�cation of a hierarchical linear model (Raudenbush and Bryk, 2002).

A slightly di�erent approach is based on the idea behind local regression (Cleveland and Devlin,

1988; Loader, 1999), in which local estimates are based on a subset of the observations. Whereas in

the original local regression this subset is de�ned over one of the covariates, in the geographically

weighted regression (GWR) proposed by Fotheringham et al. (1998, 2002), the coe�cient estimate

for each location is based on covariates in geographically neighboring observations, using a kernel

weighting approach. Randomly varying coe�cients can be found primarily in the Bayesian literature

(e.g., the review in Gelfand et al., 2003). A recent comparison of GWR and Bayesian spatially

varying coe�cient models is given in Wolf et al. (2018).

In the current paper, we focus on discrete heterogeneity, in the form of spatial regimes, as de�ned

in Anselin (1988) (for a more recent review, see Anselin and Rey, 2014, Chapters 12 and 13). Using

the notation from Anselin and Rey (2014), the basic spatial regimes speci�cation can be expressed
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as:1

yij = �j + x0ij�j + �ij ;

for i = 1; : : : ; n, with n as the total number of observations, x0 a vector containing the explanatory

variables and � as the error term. The observations are also indexed by j, the regime to which each

observation belongs, with j = 1; : : : ; J , where there are a total of J di�erent spatial regimes. Each

regime consists of a subset of observations and each observation belongs to one and only one regime

(there are no empty regimes). Spatial regimes are made up of spatially contiguous observations or

regions, but in general, regimes could be any strati�cation of the observations into subcategories.

The implication of this speci�cation is that each regime j has its own intercept �j and set of

slope coe�cients �j . The standard assumption is homoskedasticity, where Var[�ij ] = �2. However,

it is typically more realistic to allow for groupwise heteroskedasticity, such that Var[�ij ] = �2
j for

each j. Alternatively, in the most general case, a fully heteroskedastic error may be assumed, such

that Var[�] = �.

In the simplest speci�cation, only the intercept varies between regimes, which is sometimes

referred to as cross-sectional spatial �xed e�ects (Kumino� et al., 2010; Anselin and Arribas-Bel,

2013), as distinct from spatial �xed e�ects in a panel data setting (Lee and Yu, 2011; Elhorst, 2014).

In essence, when groupwise heteroskedasticity is assumed, the speci�cation of spatial regimes

is equivalent to a di�erent regression for each group. This is the standard approach to test for

structural stability in a regression model (e.g., Chow, 1960). The spatial regimes setup is only

special in the sense that the de�nition of the di�erent regimes is based on spatial structure. In

most other respects, it is equivalent to the treatment of structural instability in standard (non-

spatial) regression analysis. An additional complication is that often spatial heterogeneity occurs

jointly with spatial dependence, which complicates speci�cation testing and estimation (Anselin,

1988).

Di�erent slope coe�cients between regimes suggest that the response of the dependent variable

to the explanatory variables is not homogeneous. This heterogeneity could be due to several factors,
1To keep the notation simple, the same linear functional form is assumed for all observations, but the coe�cients

are allowed to vary.
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but in the spatial regimes model only the presence of spatial structural instability is indicated, not

the reasons why it occurs. A simple test for such heterogeneity in spatial econometric speci�cations

is a spatialized version of the Chow test (Anselin, 1990).

In applied spatial econometrics, the most common application of spatial heterogeneity is in

the consideration of submarkets in the estimation of hedonic house price models. Such market

segmentation may result from inelasticities in both supply and demand, resulting in spatially varying

marginal prices, i.e., di�erent coe�cients in the hedonic price regression model.

The literature on the econometric treatment of housing submarkets is vast, but a comprehensive

review is beyond the current scope. Classic references that emphasize the spatial aspects include

Goodman and Thibodeau (1998, 2003, 2007), and Bourassa et al. (1999, 2003, 2007, 2010). Ex-

tensive literature reviews can be found in Anselin and Lozano-Gracia (2009), Helbich et al. (2013),

and Bhattacharjee et al. (2016), among others.

The typical econometric treatment of spatial regimes is carried out in two stages. In the �rst,

the regimes are delineated, either based on some exogenous classi�cation (e.g., administrative areal

units) or derived from the data (using various clustering techniques). In the second stage, the

heterogeneity of the regimes is taken into account in the model estimation, in the form of di�erent

intercept and/or slope coe�cients. If considered, the treatment of spatial e�ects is implemented in

the second stage.

In the �rst stage, the resulting regimes often do not yield solutions where observations in each

regime are also spatially contiguous, especially when a standard clustering method is applied, such

as K-means clustering. Whether or not this is desired depends on the context, although there is no

consensus. For example, in the housing submarket literature, the advantages of spatially delineated

submarkets are touted by some (e.g., Bourassa et al., 2003), whereas others see it rather as an

unnecessary constraint (e.g., Belasco et al., 2012). In this paper, we focus on regimes that enforce

the contiguity constraint, i.e., spatial regimes.

Alternatives to the two-stage approach consist of methods where the regime determination and

the coe�cient estimation are carried out jointly, which we term endogenous regimes. An early

example in the housing literature is the application of �nite mixture models, e.g., by Ugarte et al.
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(2004) and Belasco et al. (2012). However, in these applications, the spatial constraints are not

satis�ed.

In this paper, we present a new approach to let the data determine the spatial regimes endoge-

nously by means of the integration of the regression �t optimization into a spatially constrained

clustering algorithm. Speci�cally, we propose a heuristic in which the regression goodness-of-�t is

used in the objective function of the SKATER algorithm (Spatial ‘K’luster Analysis by Tree Edge

Removal) of Assunçªo et al. (2002, 2006).

In the remainder of the paper, we �rst review a number of approaches to delineate spatial

regimes, with selected examples pertaining to housing market segmentation. We categorize these

as exogenous regimes, data-driven regimes and endogenous regimes. This is followed by a technical

discussion of estimation methods, with particular attention to �nite mixture models and our new

spatially constrained endogenous regimes. These methods are compared in an empirical application

of hedonic house price regression using the well-known Kaggle data set with house sale prices and

characteristics for King County, Washington. We close with some concluding remarks.

2 The Delineation of Spatial Regimes

2.1 Exogenous Regimes

The simplest delineation of spatial regimes is when the grouping of observations is taken to be

exogenous, determined a priori, based on some criteria that are totally outside the subject of the

study. Typically, these are administrative areas, such as census tracts or neighborhood de�nitions,

or clearly de�ned subregions, such as Baltimore City vs Baltimore County, or eastern, southern and

western states in the U.S., as in the examples in Anselin and Rey (2014, Chapter 12). Early appli-

cations in the housing submarket literatures are the use of administrative boundaries in Bourassa

et al. (1999), zip code zones and school districts in Goodman and Thibodeau (2003), and counties

in Brasington and Hite (2005), among many applications.

The typical approach taken in empirical practice is to deal with these subareas by means of

spatial �xed e�ects, i.e., only the intercept is allowed to vary, or a dummy variable quanti�es the
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di�erence with a regime selected as the base case.

2.2 Data-Driven Regimes

We refer to data-driven regimes as those approaches where the regional subdivisions are the result of

a clustering exercise, such as K-means, typically applied to the explanatory variables in the model

(sometimes including the dependent variable as well). In the literature on hedonic house price

models this includes housing characteristics or characteristics of the owners/sellers (if available).

Sometimes, the clustering is applied to larger spatial units that encompass the individual house

observations. For example, census tract characteristics can be used to obtain a classi�cation of

tracts into �neighborhoods�, which then form the basis for the regimes applied to the individual

observations (e.g., house sales within the tracts).

When many variables are available, dimension reduction is typically carried out and the cluster-

ing is applied to a subset of the principal components of the original variables. An early example

of this approach is contained in Bourassa et al. (2003). However, the resulting clusters typically

do not form proper spatial areal units. Such a spatially contiguous solution may be facilitated by

including the x-y coordinates of the observations among the cluster variables, as in Bourassa et al.

(2010), although this still does not o�er a guarantee.

In order to obtain clusters where the included observations are spatially contiguous, one of the

several spatially constrained clustering methods can be applied, such as SKATER (Assunçªo et al.,

2002, 2006), Redcap (Guo, 2008; Guo and Wang, 2011), AZP (Openshaw, 1977; Openshaw and

Rao, 1995), or max-p (Duque et al., 2012). However, to date, such applications are very rare in the

housing submarket literature. An exception is Helbich et al. (2013), where the SKATER algorithm

is applied to principal components of coe�cient surfaces obtained from geographically weighted

regression to derive the submarket de�nitions. Once the regimes are delineated, the heterogeneity

can be accounted for in the hedonic regression.

A slightly di�erent approach is taken by Bhattacharjee et al. (2016). Their focus is on the

delineation of housing submarkets as such. To that e�ect, they develop a new spatial functional

5



regression approach that yields a functional regression slope for the variable of interest.2 This re-

gression slope is employed together with a spatially averaged value of the explanatory variable in a

hierarchical clustering exercise, using Ward’s method. The outcome of the clustering application is

the delineation of the submarkets. No additional regression is carried out. This approach thus com-

bines elements of the continuous heterogeneity perspective to estimate the coe�cients, speci�cally

spatial functional regression coe�cients (similar to GWR) with a discrete view of the submarkets.

However, unlike the other examples of data-driven regimes, the speci�c heterogeneity identi�ed in

the submarkets is not accounted for in a separate estimation. Also, since the clustering method is

a-spatial, the resulting submarkets are not spatial regimes in a strict sense.

2.3 Endogenous Regimes

In what we refer to as endogenous regimes, there is no longer a hard separation between the regime

determination and the coe�cient estimation. Those two operations are carried out jointly. An early

example of the endogenous approach is the use of �nite mixture models (McLachlan and Basford,

1988; McLachlan and Peel, 2000; Frühwirth-Schnatter, 2006; McLachlan et al., 2019), applied in

the housing submarket context by Ugarte et al. (2004) and Belasco et al. (2012).

The basic principle underlying the mixture model approach is the existence of a �nite number

of distinct (latent) distributions, each associated with a set of parameter values. In addition, there

is a probability distribution that associates each observation with each of the latent distributions.

Under a set of regularity conditions, Maximum Likelihood estimation yields results for both the

underlying parameters (e.g., regression coe�cients) and the probabilities of belonging to each of

the regimes, typically by means of an application of the expectation-maximization (EM) algorithm

(Dempster et al., 1977). This yields joint estimates for the posterior probability of each observation

belonging to a particular regime, as well as associated coe�cient estimates.

In practice, the EM approach is often followed by a so-called hard assignment, where each
2In the Bhattacharjee et al. (2016) article, the focus is on the explanatory variable living area, and other housing

characteristics are controlled for in an auxiliary regression on (exogenous) neighborhood �xed e�ects as well as �ve
factors constructed from a large set of characteristics. The residuals from this regression are then used to obtain the
functional regression coe�cients.
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observation is allocated to the regime for which its posterior probability is the largest. However,

this allocation does not ensure spatial contiguity. Standard regime regression can then be applied

to this hard assignment. Technical details are considered in Section 3.2.

The heuristic we propose also jointly carries out the allocation to regimes and the estimation of

the regression coe�cients. It is similar in spirit to the neighborhood analysis strategy recently out-

lined in Olson et al. (2021), which integrates the regression estimation into an integer programming

framework, following the classi�cation and regression via integer optimization (CRIO) methodology

from the machine learning literature (Bertsimas and Shioda, 2007). However, this approach does

not enforce contiguity, thus resulting in spatially disparate cluster allocations. Instead, we inte-

grate the regression �t into the objective function of the SKATER spatially constrained clustering

algorithm, thereby ensuring the construction of proper spatial regimes. We provide a technical

discussion in Section 3.3.

3 Regime Regression

3.1 The Textbook Case

The elements of spatial regime regression estimation are fairly standard, but for the sake of clarity,

we brie�y outline the basics in what follows.3 In our exposition, we will use a simpli�ed speci�cation

where the structural instability pertains to two subregions, j = 1; 2. We can express the two

regressions in pooled form as:

2

64
y1

y2

3

75 =

2

64
X1 0

0 X2

3

75

2

64
�1

�2

3

75 +

2

64
�1

�2

3

75 ;

where y1 and y2 are vectors of observations on the dependent variable, respectively of dimensions

n1�1 and n2�1 (with n1 +n2 = n), X1 and X2 are n1�k and n2�k matrices of observations on

the k explanatory variables, �1 and �2 are k� 1 vectors of the regression coe�cients in each subset
3This section is based on Chapters 12 and 13 in Anselin and Rey (2014), to which we refer for further technical

details.
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(including a constant term), and �1 and �2 are n1 � 1 and n2 � 1 vectors of error terms.

With groupwise heteroskedasticity, i.e., a separate error variance for each regime, estimation is

equivalent to a separate regression in each regime. A fully general form of heteroskedasticity can

be introduced as well, resulting in an application of feasible generalized least squares (FGLS). A

test for the constancy of the regression coe�cients, either individually or jointly, can be based on

the classic Chow test (Chow, 1960).

Spatial dependence can be introduced into this speci�cation in two main ways. In the �rst, the

spatial autoregressive coe�cient is �xed throughout the sample. For example, in the two-regime

case, a spatial lag speci�cation would be:

2

64
y1

y2

3

75 = �W

2

64
y1

y2

3

75 +

2

64
X1 0

0 X2

3

75

2

64
�1

�2

3

75 +

2

64
�1

�2

3

75 ;

with a �xed spatial autoregressive coe�cient � and associated spatially lagged dependent variable

Wy.

This speci�cation is appropriate when it is assumed that a single spatial process operates on the

complete data set. Consequently, there is only one spatial autoregressive coe�cient �, even though

the other (non-spatial) parameters in the model may vary across regimes.

Extending the same rationale to the spatial autoregressive error model, the regime speci�cation

for the non-spatial parameters boils down to the familiar expression:

2

64
y1

y2

3
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2
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X1 0

0 X2

3
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2
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2
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�1

�2

3

75 ;

where the error terms follow a spatial autoregressive process, as in:

2

64
�1

�2

3

75 = �W

2

64
�1

�2

3

75 +

2

64
u1

u2

3

75 :

with u1;2 as the idiosyncratic error vectors belonging to each regime. Again, the underlying as-
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sumption is that a unique spatial process drives the dependence across the full data set, determined

by a single autoregressive parameter � with an associated spatial weights matrix W applied to the

stacked error terms �1 and �2.

A di�erent perspective is o�ered when the spatial parameters are allowed to vary across regimes.

For the spatial lag model, the speci�cation in our two-region example then becomes:

2

64
y1

y2

3

75 =

2

64
�1W1 0

0 �2W2

3

75

2
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2
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X1 0
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2
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�1

�2

3

75 +

2

64
�1

�2

3

75 ;

with the spatial weights W1;2 corresponding to the separate weights for each regime, pertaining

only to those observations that belong to the regime.

For the spatial autoregressive error process, the counterpart is:

2

64
�1

�2

3

75 =

2

64
�1W1 0

0 �2W2

3

75

2

64
�1

�2

3

75 +

2

64
u1

u2

3

75 ;

where again the weights are the regime weights, with matching autoregressive coe�cients.

The interpretation of spatial parameters that vary by regime is somewhat more complex than

for the regression parameters. It is important that the assumption of separate spatial processes

driving the regimes is realistic. This implies that there are no spill-overs between regimes and any

dependencies are fully contained within each regime. In practice, it is usually more appropriate to

assume a single spatial process across all regimes.

Estimation of the spatial models follows the usual principles, either employing Maximum Likeli-

hood or Generalized Method of Moments. Details can be found in Anselin and Rey (2014), among

others. A test on the hypothesis of constant coe�cients across regimes can be based on the spatial

version of the Chow test (Anselin, 1990).
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3.2 Finite Mixture Models

The standard �nite mixture model in a regression context formulates the conditional probability of

a given observation for the dependent variable y as a weighted sum of conditional probabilities for

each regime j, weighted by a probability �j . More formally, this can be expressed as:

h(yjx; �) =
JX

j=1

�jf(yjx; �j ; �2
j );

with �j � 0 and
PJ
j=1 �j = 1, and h and f as conditional probability densities. The latter is

typically assumed to be Gaussian in a linear regression context. Each regime has its own set of

regression coe�cients �j and error variance �2
j . For ease of notation, all the parameters (i.e., the

�j , �j and �2
j for each regime) are grouped in the vector �.4

The posterior probability that an observation i belongs to regime j is:

P (i 2 jjy; x; �) = pij =
�jf(yjx; �j ; �2

j )
PJ
j=1 �jf(yjx; �j ; �2

j )
: (1)

This expression combines the regime probabilities �j with the individual likelihood (f , based on

the current estimates for the �j and �2
j ) for each regime. The estimates p̂ij yield updated values

for �̂j as the average of the posterior probabilities:

�̂j = (1=n)
X

i

p̂ij :

With the posterior probabilities in hand, each observation can be assigned to the regime with the

highest associated probability, in a so-called hard assignment.

The estimation of the model parameters is complex and involves a log-likelihood function that

contains both the regime probabilities as well as the regime regression parameters. For independent
4See also Leisch (2004) and Grün and Leisch (2008) for a detailed exposition.
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observations, this boils down to the familiar sum of the individual log-likelihoods:

logL =
nX

i=1

log(
JX

j=1

�jf(yjx; �j ; �2
j ):

However, the joint estimation of all parameters is not possible. In practice, the EM algorithm

of Dempster et al. (1977) is used. This consists of an iteration between the estimation of regime

membership probabilities �̂j , the so-called expectation step, and the estimation of the regression

coe�cients, the maximization step. The latter is based on a weighted log-likelihood, using the

estimates of the regime probabilities to weight each observation.

Given estimates for each �̂j and the regime regression parameters �j and �2
j , Equation (1) can

be used to compute posterior probabilities that each observation i belongs to a regime j, or p̂ij .

These probabilities are then used in a weighted maximization process to obtain estimates for each

�j and �2
j :

max�j ;�2
j

nX

i=1

p̂ij logf(yijxi; �j ; �2
j ):

In addition, they also yield updated values for the �̂j . Iteration between the two steps continues

until convergence is reached.

The resulting hard assignment does not typically yield proper spatial regimes, since it is di�cult

to integrate a spatial constraint in the mixture estimation. In the literature, there have been a few

attempts to introduce spatial aspects into this framework, such as Wall and Liu (2009), Lee (2018),

and Bolin et al. (2019). However, these tend to either be based on a geostatistical and Bayesian

perspective, or require a panel data structure, neither or which are within the scope of the current

paper.

In our application, we use the R package flexmix to implement the �nite mixture regressions

(Leisch, 2004; Grün and Leisch, 2008).
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3.3 Spatially Constrained Endogenous Regimes

The endogenous spatial regime estimation method we introduce in this paper is based on an ex-

tension of the SKATER spatially constrained clustering algorithm. This approach utilizes a graph

partitioning logic in a divisive hierarchical clustering application. The key concept is the creation

of a graph structure that enforces contiguity, in the sense that only nodes (observations) that are

spatial neighbors have an edge between them in the graph.

The point of departure is a n� n spatial weights matrix, W, created using one of the common

conventions (e.g., contiguity, distance bands, k-nearest neighbors).5 The weights matrix provides

the structure for a graph, where each observation is a node and the edges correspond to non-zero

elements in the spatial weights matrix.

The edge weight is based on the attribute similarity between the pair of observations, computed

as a squared Euclidean distance. For example, with a n�k (standardized) matrix Z of observations

on the relevant variables, the distance squared between two contiguous spatial units i and u is:

d(i; u) = d(zi; zu) =
kX

p=1

(zip � zup)2;

where zi and zu are k � 1 vectors of observations.

The resulting weighted graph is then reduced to a minimum spanning tree (MST), i.e., such

that there is a path that connects all observations (nodes), without any cycles (circular paths) and

such that the sum of the edge weights is minimized. In other words, the n nodes are connected by

n� 1 edges, such that the overall between-node dissimilarity is minimized.

At this point, our approach deviates from the standard SKATER implementation. In SKATER,

the MST is pruned by dropping an edge, i.e., cutting the connection between two observations, such

that the between group dissimilarity is decreased the most. To accomplish this, each potential split

is evaluated in terms of its contribution to the objective function. Since the graph structure is

based on contiguity, each resulting subgraph also consists of spatially contiguous entities.

In our endogenous regimes implementation, the objective function is no longer the between
5See Anselin and Rey (2014), Chapters 3 and 4, for an extensive discussion.
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group similarity, but instead is based on the �t of the regression, i.e., the sum of squared residuals

(SSR). The SSR is readily computed from the di�erence between the observed and predicted values:

SSR =
X

i

(yi � ŷi)2 = (y � ŷ)0(y � ŷ)

where the predicted value ŷ is obtained for each particular model.

More precisely, in a standard OLS regression, the predicted value is the usual ŷ = X�̂. In the

spatial lag model, the predicted value is obtained from the reduced form, as:

ŷ = (I� �̂W)�1X�̂:

In the spatial error model, the spatial autoregressive parameter is not involved in the predicted

value itself, only in its precision. We can gain a computational advantage by exploiting the unbi-

asedness property of OLS for this speci�cation, so that we can base our algorithm on the SSR of

a simpler regression, using OLS. After the regimes have been obtained, the proper FGLS method

can be applied to obtain the spatial parameters.

Our heuristic proceeds in the same fashion as SKATER, but now using the SSR for each tree

as the criterion to select the optimal pruning of the MST. Formally, for each tree T , the removal of

an edge E results in two subtrees, say a and b. The decrease in SSR that results from that cut is:

f(E) = SSRT � (SSRa + SSRb);

where SSRa and SSRb are the contributions of each subtree. The edge is pruned for that E where

the di�erence f(E) is the largest. At this point, we repeat the process for the new set of subtrees

to select an optimal cut. This is continued until the desired number of regimes (J) is reached.

In sum, if the objective is to obtain J spatial regimes, J � 1 edges must be removed. The

iterative process can be described as:

1. Run the econometric regression considering all spatial units to compute the total sum of

squared residuals (SSRT );
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2. For each edge E in the MST, compute the objective function f(E) to identify the edge with

the highest f(E);

3. Remove E, creating two sub-trees;

4. As long as the number of sub-trees is smaller than the desired number of clusters, repeat 2

and 3 evaluating the objective function based on the total SSR of each sub-tree and the edges

it contains.

At the end of the process, the regime regression can be re-run to obtain standard errors and

other model diagnostics.

One drawback of this approach (and of SKATER in general) is that it is computationally

demanding, since the objective function needs to be evaluated for every potential cut. In addition,

since it is a hierarchical method, once an observation is assigned to a particular subtree, it cannot

be swapped to a di�erent subtree. Also, in order to be suitable in a regression context, a minimum

size constraint must be imposed on each subtree, to assure reliable coe�cient estimates. Finally, as

with any heuristic, there is no guarantee that an optimal solution is obtained.

The method, which here we label Skater-regression, or Skater-reg for short, is implemented as

part of the spreg module in PySAL, a Python-based library for spatial data analysis (Rey and

Anselin, 2007; Rey et al., 2021).

4 Empirical Illustration

4.1 Data

The data we used to illustrate various regime regression approaches come from a well-known Kaggle

set that contains information on house sales between May 2014 and May 2015 in King County,

Washington, which includes the city of Seattle.6

The original data set contains 21,613 observations as points with coordinates as latitude and

longitude, which we reprojected to UTM Zone 10N to yield distance measures as meters. From this
6The dataset is available from https://geodacenter.github.io/data-and-lab//KingCounty-HouseSales2015/
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original set, we removed 353 repeat sales and only kept information on the latest transaction at that

location. We further removed 1,147 observations that had multiple sales at the same location which

were not repeat sales, suggesting a multi-unit structure. In addition, we dropped 254 transactions

that were more than 500m from their nearest neighbor, as well as 14 remote locations in the eastern

part of the county.

We further cleaned the data by removing obvious coding errors, such as an observation with

33 bedrooms, sales with zero bedrooms or zero bathrooms, as well as sales on Vashon and Maury

islands (these created problems with the spatial weights used in the clustering routines). The �nal

data set contains 19,687 observations.

4.2 Hedonic Model Speci�cation

The regression speci�cation uses log10 of the price (logprice) as the dependent variable to control

for the extreme skewness of the price variable, as is customary in hedonic model applications.

We include all continuous house characteristics available in the Kaggle data set as explanatory

variables. In addition, we also computed age (and age squared � age2 �, to allow for the typical

nonlinear association between price and age) from the year built variable and created new indicator

variables as groupings of the original categories, to control for the lack of observations in individual

categories. We also included a completely new variable to proxy density and sprawl in the form

of the distance to the nearest neighbor (distn). This was calculated from the house coordinates.

The full list of variables and their de�nition is given in Table 1, with descriptive statistics in Table

2. A general impression of the spatial distribution of the log10 of sales prices is presented in the

box map in Figure 1. This reveals an overall trend of higher prices closer to the core of Seattle and

near the waterfront. Of the 19,687 observations, only 270 turn out to be upper outliers and only

38 lower outliers.

As a reference, the results of an ordinary least squares regression of the basic speci�cation are

listed in Table 3. Except for the number of bedrooms, which has a negative sign, all the signs are

in the expected direction. The e�ect of distance to the nearest neighbor is negative, suggesting a

minor premium for higher density. All coe�cients are highly signi�cant, except for sqft_lot15.
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Also renovated and sqft_lot, while still strongly signi�cant, are less so than the other coe�cients.

The overall �t amounts to an R2 of 0.655.

4.3 Regime Delineation

We consider six di�erent regime speci�cations, three of which are spatially contiguous � zip code

zones, classic SKATER clusters, and our spatially constrained endogenous regimes �, and three

that are not necessarily spatially contiguous � K-means clustering, K-means with x-y coordinates,

and the �nite mixture model.7

As an example of an exogenous regime, we construct a spatial aggregation of the zip code zones

that cover King county into �ve regions, utilizing K-means clustering on the centroid coordinates of

the zip code zones. We chose �ve regions, since this turned out to be the best selection of number

of clusters in the spatially constrained endogenous regimes. To illustrate the di�erent methods,

we used the same value for all regime speci�cations to allow for easy comparison, even though we

recognize that this number of clusters may not be optimal in each particular case.

The resulting number of observations by category for the zip regimes are listed in the fourth

column of Table 4 and the corresponding spatial layout is shown in panel (a) of Figure 2.

Note that the regime label as such has no meaning. We follow the convention used in GeoDa

to label categories in decreasing order of the number of observations. For the zip code regions, the

regimes range from 7383 to 977 observations, with the last category about a third the size of the

previous two. The �rst two categories are substantially larger. The spatial layout is characterized

by a clear west-east split, with the former consisting of three north-south categories, and the latter

of two.

Three data-driven regimes are based on the results of, respectively, K-means clustering, K-

means clustering with x,y coordinates included, and SKATER spatially constrained clustering.

The clustering is carried out on the nine continuous explanatory variables (not including floors).

For the application of SKATER, a symmetric k-nearest neighbor spatial weights matrix is used

with k=17. This ensured that all observations were spatially connected, which is required for the
7All cluster results are obtained with the GeoDa software (Anselin et al., 2021).
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proper application of the algorithm.

The quality of the clusters computed with the di�erent methods varies greatly. The best result in

terms of the ratio of between sum of squares to total sum of squares is obtained for K-means (0.5186).

However, the introduction of the x-y coordinates in the feature set lowers this to 0.4527. Finally,

the imposition of the spatial constraint in SKATER pays a heavy price in terms of intra-cluster

similarity, with the ratio decreasing to 0.1168. In other words, in order to obtain spatially compact

regimes, the within-cluster similarity on the nine continuous variables declines considerably.

The corresponding number of observations by regime are listed in columns 1, 2 and 5 of Table

4. The distribution among the �ve categories is quite di�erent for each of the cluster results.

SKATER yields the largest single group, with 7766 observations, but both K-means results have a

very small �fth category, with respectively 283 and 288 observations (SKATER’s smallest category

has 1842). The top four categories for K-means x-y are fairly evenly balanced (ranging from 5188

to 4359), whereas this is the case for SKATER’s three middle categories (3618 to 3080). K-means

is dominated by the two largest groups (6870 and 6092 observations). The spatial layout of the

SKATER result is shown in panel (b) of Figure 2. We see three north-south stacked regimes in the

western part of the county, with two large north-south regions to the east. The largest region is in

the center of the map.

The spatial layout for the non-spatial clusters is not shown, since it has no particular spatial

organization and any pattern would be hard to distinguish on a point map with so many observa-

tions. Instead, we proxy the extent to which the compactness of a regime approaches that of the

spatially contiguous regimes by computing the ratio of join counts of the same regime classi�cation

to the total number of joins in each regime. For the spatially contiguous regimes, this ratio should

be equal to one, except for boundary e�ects. For the others, the higher the ratio, the more the

spatial layout approaches one where an observation in a given category is surrounded by neighbors

in the same category.

The results are summarized in Table 5. For K-Means and K-Means (x-y), the ratios are listed

in the �rst two columns. As is to be expected, K-Means (x-y) does better than K-Means, since it

includes the coordinates in the clustering objective. It achieves an overall ratio of 0.6689, compared
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to 0.5396 for K-Means. Only one of the regimes has a ratio below 0.5 and the highest value is

0.8064. All the individual regime ratios for K-Means (x-y) clearly dominate K-Means.

The cluster allocation for the �nite mixture model and the spatially constrained endogenous

regimes, here labeled as Skater-regression, are obtained as part of the estimation process. For

comparison purposes, the number of observations by regime for a hard allocation in the �nite

mixture model and the outcome for the Skater-regression are given in columns 3 and 6 of Table

4. The �nite mixture results show a fairly linear decline from 6045 in the largest group to 823 in

the smallest. For Skater-Reg, the smallest group has 336 observations, similar to the results for the

two K-means approaches, but only about one sixth of the size for the SKATER cluster method.

The regimes are dominated by two larger groups (7425 and 6261) and evenly balanced remaining

categories. The spatial layout of Skater-reg, shown in panel (c) of Figure 2 is quite distinct of that

of the other two spatial methods in that much less north-south stacking is present. The two largest

regions span from west to east, one in the north and middle, the other in the southern part of

the county. The smallest region is an enclave situated in the city of Bellevue, on the east coast

of Lake Washington. In contrast, the join count ratio for the �nite mixture results (in the third

column of Table 5) are the worst, with an overall ratio of 0.4270, well below 0.5, and the individual

regime ratios ranging from 0.2570 to 0.4851. Clearly, in this particular empirical application, the

optimization of the regime regression �t is obtained by ignoring any spatial structure.

4.4 Regime Regression Results

The six regime classi�cations, with �ve categories each, yield a total of 30 sets of 17 regression

coe�cients. It is beyond our scope to delve into these in detail, since our focus is on the role of

the regime selection. The results are summarized in Table 6, which lists for each variable and each

regime classi�cation those categories where the coe�cient was not signi�cant at p < 0.01. Recall

that the category labels have no meaning and only indicate the relative size of each category (with

1 having the largest number of observations). We chose this summary since all variables except

floors are signi�cant in the majority of cases (i.e., more than 15). In addition to the constant term,

the variable sqft_liv is consistently signi�cant in all cases. A few others, such as sqft_liv15, the
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grade indicator variables, and the view indicator variable only fail to be signi�cant in a handful of

situations (less than �ve out of thirty).

Other variables with more than 20 instances of signi�cant coe�cients include age2, condn,

sqft_lot, bath, and age. The evidence for the remaining variables is mixed, alternating signi�cance

in some regimes with lack thereof in others.

In all, each regime classi�cation yields 85 estimated coe�cients. Across this broad spectrum, the

�nite mixture model achieves the best result, with 79 signi�cant results (6 non signi�cant in Table

6), which is expected, since it optimizes the �t of the submodels. The two K-means approaches

give the worst result, with respectively 58 (K-means x-y) and 59 (K-means) signi�cant coe�cients.

The Skater-regression endogenous regimes yield 64 signi�cant coe�cient estimates. Whereas this

is only the fourth best result, the Skater-reg is second only to the �nite mixture model in terms of

overall �t, with an R2 of 0.8379 compared to 0.9226 for �nite mixtures. This is much better than

the data-driven K-means (0.6745 and 0.7609) and SKATER results (0.7545). Intriguingly, the ad

hoc zip code regions are third both in terms signi�cant coe�cients as well as overall �t, with 67

signi�cant coe�cients and an R2 of 0.8086.

The full results for the Skater-regression regimes are listed in Table 7, which contains details

on the signi�cance of each coe�cient in the respective regimes. The �t in the individual regimes

(computed using the regime-speci�c mean of the dependent variable rather than the overall mean)

ranges from 0.857 in the smallest subset (with 336 observations) to 0.693 in the second largest (n

= 6261). The �t for the other three regimes is around 0.75.

Finally, we show the outcome of the Chow test on constancy of the regression coe�cients

across regimes in Table 8. The overall test rejects the null hypothesis on constancy with very high

signi�cance in all regimes settings. However, only for the �nite mixture results is the rejection also

for each individual coe�cient at p < 0.001. Using p < 0.05, Skater-reg also achieves this result.

For the other regimes SKATER fails to reject (at p < 0.05) for sqft_lot and bedrooms, Zip for

bathrooms, K-means for sqft_liv and K-means (x-y) for sqft_liv and floors. The dominant

result, however, is rejection of the null hypothesis, suggesting (strong) regime heterogeneity.

Overall, the Skater-regression comes closest in terms of �t to the gold standard of the �nite
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mixture regression. Whereas the latter yields a set of collections of individual observations that

have no spatial structure whatsoever, our new approach results in spatially cohesive sub-regions.

The loss in overall �t relative to the �nite mixture result is the price to pay to achieve the objective

of spatial contiguity.

5 Concluding Remarks

In this paper, we proposed a new approach to determine spatial regimes endogenously by incorpo-

rating the regression �t in the objective function of a spatially constrained regionalization method.

The results are encouraging, yielding both a good overall �t and meaningful spatial subregions for

the observations in our empirical illustration. Clearly, further experimentation is needed to address

the performance of our approach in other settings.

In our empirical application, the data driven methods to obtain regime de�nitions did not do

well in terms of �t. This may be due to the peculiarities of the particular data set, but it is

something to keep in mind. It suggests that it is important to assess the sensitivity of the results

and the interpretation of the associated regimes for more than one method.

The �nite mixture approach does best, con�rming earlier �ndings in the literature. However,

the resulting regimes are simply collections of individual observations that yield the best �t and

typically do not have a meaningful spatial interpretation. When the latter is an objective, as in

the case of spatial regimes, our preliminary results suggest that the Skater-regression approach

provides a viable alternative. The di�erence in �t provides an indication of the extent of the trade

o� required to satisfy the spatial constraint.
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Table 1: Variable De�nitions

Variable De�nition
price sale price (dependent variable used as log10)
bedrooms number of bedrooms
bathrooms number of bathrooms
sqft_liv size of living area in square feet
sqft_lot size of the lot in square feet
�oors number of �oors
renovated 1 if renovated
age age of structure (computed from yr_built variable)
age2 square of age
sqft_liv15 average size of closest 15 houses, in square feet
sqft_lot15 average size of the closest 15 houses’ lots, in square feet
viewd 1 if view is > 0 on the original view scale of 0 to 4
condn 1 if condition > 3 (better than poor, fair and average)
avggrade 1 if grade = 7 (average grade, plats and sub-divisions)
abvavgrd 1 if grade = 8 (just above average, better materials)
greatgrd 1 if grade > 8 (better design, high quality, custom, mansion)
distnn distance to nearest neighbor in meters

Table 2: Descriptive Statistics

variable mean std min 50% max
price 546,677 374,938 78,000 454,000 7,700,000
log(price) 5.671 0.230 4.892 5.657 6.887
bedrooms 3.40 0.90 1 3 11
bathrooms 1.76 0.73 1 2 8
sqft_liv 2104 918.8 390 1940 12050
sqft_lot 13624 34109 520 7679 1164794
�oors 1.4 0.54 1 1 3
renovated 0.043 0.202 0 0 1
age 44.3 29.1 0 41 115
age2 2811 3113.9 0 1681 13225
sqft_liv15 2003.7 689.3 399 1860 6210
sqft_lot15 11414 20027.4 659 7660 411962
viewd 0.099 0.299 0 0 1
condn 0.348 0.476 0 0 1
avggrade 0.417 0.493 0 0 1
abvavgrd 0.280 0.449 0 0 1
greatgrd 0.202 0.401 0 0 1
distnn 97.6 71.2 11.1 78.7 495.9
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Table 3: OLS Estimation Results

variable coe�cient std. error p-value
constant 5.1179 0.0083 0.0000
bedrooms -0.0177 0.0014 0.0000
bathrooms 0.0281 0.0021 0.0000
sqft_liv 0.0000897 0.0000022 0.0000
sqft_lot 0.0000001 0.000000 0.0008
�oors 0.0183 0.0027 0.0000
renovated 0.0136 0.0051 0.0077
age 0.00091 0.00016 0.0000
age2 0.000015 0.000001 0.0000
sqft_liv15 0.000048 0.000002 0.0000
sqft_lot15 -0.0000001 0.0000001 0.1399
viewd 0.0683 0.0035 0.0000
condn 0.0220 0.0023 0.0000
avggrade 0.1270 0.0036 0.0000
abvavgrd 0.2121 0.0042 0.0000
greatgrd 0.3108 0.0055 0.0000
distnn -0.00020 0.00002 0.0000
R2 0.655

Table 4: Number of Observations By Regime

Non-Spatial Spatial
K-Means K-Means (x-y) Finite Mixture Zip Zones Skater Skater-Regression

1 6970 5188 6045 7383 7766 7425
2 6092 5056 5904 5498 3618 6261
3 3661 4796 4588 2991 3381 2874
4 2681 4359 2327 2838 3080 2791
5 283 288 823 977 1842 336

Table 5: Join Count Ratio for Non-Spatial Regimes

K-Means K-Means (x-y) Finite Mixture
1 0.5612 0.6674 0.4597
2 0.5351 0.6218 0.4851
3 0.5339 0.8064 0.3640
4 0.5164 0.5917 0.3792
5 0.3958 0.4028 0.2570

Overall 0.5396 0.6689 0.4270
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Table 6: Regime Estimation Results - Coe�cients Not Signi�cant at p< 0.01

variable K-Means K-Means (x-y) Fin. Mixture Zip Skater Skater-Reg
constant � � � � � �
bedrooms 4,5 1,3,5 � 3,4,5 3 2,3,5
bathrooms 4,5 1,3,5 5 5 3 �
sqft_liv � � � � � �
sqft_lot 1,2,3,4 2,4 3 1,2 1,2,3 3,4,5
�oors 3,4,5 1,2,3,4,5 � 1,2,3,5 4,5 2,5
renovated 2,4,5 1,5 � � 3,4 3,5
age 3,4 4 � 2,4,5 2,4 1,3
age2 4 � � � 2,4 1,4
sqft_liv15 � � 4 � � �
sqft_lot15 1,3,5 2,4,5 3 5 � �
viewd 5 5 � 5 � �
condn 5 5 1,5 5 � 5
avggrade 3 4 � � � 5
abvavgrd 3 4 � � � 5
greatgrd 3 4 � � � �
distnn 5 2,4,5 � 3,4 3,4,5 1,2,3,5
R2 0.6745 0.7609 0.9226 0.8086 0.7545 0.8379
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Table 7: Spatially Constrained Endogenous Regimes � OLS Estimation

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5
CONSTANT 5.3286*** 5.1639*** 5.345*** 5.1768*** 5.7688***

(0.01) (0.0107) (0.0142) (0.0168) (0.0506)
bedrooms -0.0047*** -0.0025 -0.0006 -0.0118*** -0.009

(0.0016) (0.0018) (0.0022) (0.0028) (0.0062)
bathrooms 0.0163*** 0.006** 0.00938*** 0.00987** 0.02391***

(0.0023) (0.0027) (0.0032) (0.0043) (0.0083)
sqft_liv 0.0001*** 0.0001*** 0.0001*** 0.0001*** 0.0001***

(0.000002) (0.000003) (0.000004) (0.000005) (0.000008)
sqft_lot 0.0000001*** 0.0000004*** 0.000002 0.000001 -0.000001

(0) (0) (0.000001) (0.000001) (0.000001)
�oors -0.0089*** 0.0037 -0.0106*** 0.0175*** -0.0115

(0.0029) (0.0035) (0.0041) (0.0062) (0.013)
renovated 0.067*** 0.0636*** 0.0031 0.0199** 0.0309

(0.0069) (0.007) (0.0072) (0.0089) (0.0179)
age 0.0001 -0.0014*** -0.0001 0.0017*** -0.0035***

(0.0002) (0.0002) (0.0003) (0.0003) (0.0009)
age2 -0.000001 0.000012*** 0.00001*** -0.000004 0.000033***

(0.000002) (0.000002) (0.000002) (0.000003) (0.000008)
sqft_liv15 0.00004*** 0.00004*** 0.00007*** 0.00009*** 0.00003***

(0.000003) (0.000003) (0.000005) (0.000006) (0.000009)
sqft_lot15 -0.0000003*** 0.0000003*** -0.000005*** -0.00001*** 0.00001***

(0.0000001) (0.0000001) (0.000001) (0.000001) (0.000002)
viewd 0.0841*** 0.098*** 0.0264*** 0.0392*** 0.0631***

(0.0039) (0.0048) (0.0058) (0.0068) (0.014)
condn 0.0489*** 0.0246*** 0.0122*** 0.0487*** 0.0079

(0.0026) (0.0026) (0.0039) (0.0052) (0.0112)
avggrade 0.0579*** 0.0417*** 0.0718*** 0.0899*** -0.0236

(0.0057) (0.004) (0.0064) (0.0066) (0.0333)
abvavgrd 0.1166*** 0.0746*** 0.1173*** 0.1871*** 0.003

(0.0062) (0.0051) (0.0076) (0.0087) (0.034)
greatgrd 0.1782*** 0.1109*** 0.2139*** 0.3118*** 0.073**

(0.0071) (0.0068) (0.01) (0.0117) (0.0368)
distnn 0.00002 0.00001 -0.00002 -0.00012*** 0.00008

(0.000016) (0.000016) (0.000039) (0.000047) (0.000086)
n 7425 6261 2874 2791 336
R2 0.765 0.693 0.752 0.749 0.857
Note 1: Standard deviation in parenthesis
Note 2: ** indicate signi�cant at 5% and *** indicate signi�cant at 1%.
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Table 8: Chow Test Results - p values

variable K-Means K-Means (x-y) Fin. Mixture Zip Skater Skater-Reg
constant 0.000 0.000 0.000 0.000 0.000 0.000
bedrooms 0.000 0.000 0.000 0.004 0.071 0.021
bathrooms 0.005 0.000 0.000 0.082 0.004 0.022
sqft_liv 0.089 0.237 0.000 0.000 0.000 0.000
sqft_lot 0.007 0.000 0.000 0.000 0.200 0.000
�oors 0.007 0.267 0.000 0.004 0.000 0.000
renovated 0.000 0.000 0.000 0.001 0.009 0.000
age 0.000 0.000 0.000 0.000 0.000 0.000
age2 0.000 0.000 0.000 0.000 0.000 0.000
sqft_liv15 0.000 0.000 0.000 0.000 0.000 0.000
sqft_lot15 0.000 0.000 0.000 0.000 0.000 0.000
viewd 0.000 0.000 0.000 0.000 0.000 0.000
condn 0.040 0.000 0.000 0.000 0.000 0.000
avggrade 0.000 0.000 0.000 0.000 0.000 0.000
abvavgrd 0.000 0.000 0.000 0.000 0.000 0.000
greatgrd 0.011 0.000 0.000 0.000 0.000 0.000
distnn 0.000 0.000 0.000 0.000 0.000 0.042
Overall 0.000 0.000 0.000 0.000 0.000 0.000
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Figure 1: Log of house sale prices in King County between May 2014 and May 2015
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